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This study demonstrates the control of an electrochemical batch reactor, that produces the desired
product in a competing chemical/electrochemical reaction network, using a multiple model-based
controller design. Since this type of control framework requires a process model to provide predic-
tions of the controlled variables, and because batch reactors are highly nonlinear and nonstationary
in nature, a bank of linear, dynamic, state-space models rather than a single, linear state-space or
convolution model is developed to represent the nonstationary behaviour of the batch process. It is
shown that the performance of this model/controller design can provide good reactor performance in
the face of known disturbances.

1. Introduction

Batch and semibatch reactors perform an important
role in the production of low volume, high quality
chemicals. This ¯exibility however, gives rise to
challenging control problems that are due to the
nonstationary and nonlinear nature of batch reactors,
hard operating constraints, and multiple, prespeci®ed
setpoint trajectories. A large number of batch control
schemes have been attempted including conventional
feedback control, feed forward-feedback control [1],

generic model control [2], adaptive regulators [3] and
model-based control strategies [4, 5].

The latter controller designs have been shown to
provide more robust control (better response to
model uncertainty and disturbances) because a model
of the process is used to predict the process perfor-
mance into the future and it avoids signi®cant online
adaptation of the controller parameters which many
of the other approaches require. Two speci®c model-
based control strategies will be presented, quadratic
dynamic matrix control (QDMC) and model pre-
dictive control (MPC) where the former is a speci®c
implementation of the latter.� Author to whom correspondence should be addressed.

Nomenclature

a electrode surface area/unit volume (cmÿ1)
A linear dynamic matrix, Jacobian matrix
B Jacobian matrix
ci bulk conc. of component i (mol cmÿ3)
cis surface conc. of component i (mol cmÿ3)
d measured disturbance
D sensitivity matrix
e error vector
E electrode potential (V)
h impulse response coe�cients
F F/RT, Vÿ1

F Faraday constant (96 487 C molÿ1)
J objective function
k discrete sampling instance
kj rate constant for reaction j (cm hÿ1)
M control horizon
P prediction horizon
r setpoint
R universal gas constant (8.314 J molÿ1Kÿ1)
t time (h)
tf batch reaction time (h)
T reactor temperature (K)

u manipulated variable
x vector of state variables
xi dimensionless conc. of component i
x0 initial state variable values
y controlled variable
ym measured variable
ŷ estimated variable

Greek letters
ai transfer coe�cient at the electrode
bi step response coe�cients
k;K weighting on the measured output
t; ! weighting on the manipulated variables
C discrete dynamic matrix
U discrete dynamic matrix
W matrix of step response coe�cients

Superscripts and subscripts
0 transpose
A reactant
c cathode
D desired product
I intermediate product
o initial condition
U undesired product
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Garcia [4] employed QDMC with a convolution
model (step response) of the process to control suc-
cessfully a polymerization reactor that can be oper-
ated both as a semibatch and batch process. In that
implementation, the convolution model is obtained
by step testing a linear approximation of a nonlinear
model (system of ordinary di�erential equations) of
the process about the current operating point at every
sample instance. The controller design is based on
this model and the controller action is found as the
least-squares solution to a quadratic error criterion
with linear process inequality constraints (see Fig. 1).

In a related work, [5] employed a more complex
design that uses an available nonlinear model in par-
allel with a linear model. Their objective is to not only
improve the estimates of the future disturbances but
also to separate the disturbance components into
contributions from external disturbances (measurable
and unmeasurable) and plant-model mismatch errors.
In this fashion, the predictions of the future states
from the linear model are repeatedly solved until they
match those of the nonlinear model (see Fig. 2).

In both studies, the solution yields a suboptimal,
nonlinear controller since the solution methodology
uses linear programming to solve the optimization
problem. Nevertheless, this approach can work quite
well in instances where the disturbances do not move
the process operations too far from the design oper-
ating point and the magnitude of the manipulated
variable changes are small. For linear processes, it is
well known that QDMC is essentially an optimal
controller. It is our intent to provide su�cient in-
centive for practitioners to consider devising model-
based control strategies for their application and
objectives.

The organization of the paper is as follows. First,
the relevant theories on quadratic dynamic matrix

control (QDMC) and model predictive control are
provided and used to design the controller. Second, a
model of a batch electrochemical process [6, 7] where
competing chemical and electrochemical reactions
occur is developed and the control problem is out-
lined. It is assumed that optimal output trajectories
are a priori speci®ed and the task at hand is to design
a controller to follow the trajectories. Finally, reactor
performance responses are provided to illustrate the
e�ectiveness of the controller in the presence of two
types of disturbances.

2. Model-based control framework

In this section, an elementary overview of the theory
is provided. Adequate references for in depth studies
can be found in [4, 8]. Quadratic dynamic matrix
control (QDMC) is a model-based predictive control
(MPC) strategy that is an optimal predictive control
method for sampled data systems. The basic idea is to
formulate the control law as the solution to an opti-
mization problem subject to constraints on the state,
manipulated, and output variables. Moreover, the
manipulated variable move is not only determined for
the current operating point, it is also calculated for M
(controller horizon) sample instances into the future
[9, 10]. This strategy is based on the predicted and the
future values of the outputs, over a prediction hori-
zon P �<1�, when no additional changes in con-
troller actions are speci®ed for M+1 up to P steps into
the future.

The predicted process behaviour is obtained by
using an online model of the process. In this fashion,
the projected errors between the desired trajectory
and the predicted response can be used to adjust the
future controller moves. Even though M � 1 future
control moves are calculated, only the current control
move is actually applied to the process; the procedure
is repeated at the next sampling instant to determine
the next controller action and so on. Figure 3
attempts to represent this scheme [5].

Clearly, the performance of the controller will be
dependent on the quality of the online model. In
classical control theory, transfer function models are
used to represent the dynamic behaviour of a process
that is assumed to be nearly linear, and to design an
appropriate control strategy. Such models, however,
require the model order to be a priori speci®ed. In
almost all cases involving chemical processes, the

Fig. 1. Linear quadratic dynamic matrix control.

Fig. 2. Nonlinear quadratic dynamic matrix control.
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additional transport lag parameter must also be de-
termined. For processes having highly nonlinear dy-
namic behaviour, linear models cannot be speci®ed to
provide su�cient accuracy.

2.1. Linear systems

In conventional QDMC the model of the process has
a linear, time-invariant convolution (step or impulse)
form that is obtained by step or pulse testing the
process. Both the transfer function and time domain
convolution approaches produce representations that
can be inaccurate for processes that are nonlinear and
nonstationary in nature.

Without loss of generality, consider a simple, lin-
ear process that has one input and one output. Such a
system can be described by

_x � Ax� Bu

y � D0 x

x0 � 0 �1�
where x 2 Rn is the vector of states, A 2 Rn�n is the
system dynamic information, u is the system input,
B;D 2 Rn�1 and y is the output. All physical systems
are subject to constraints that may arise from ac-
tuator limitations and safety considerations. Here, it
is assumed that u�t� is member of a set that is convex
and every sequence in that set converges to an ele-
ment that is a member of the set. Similarly, x(t) is a
member of a set that is convex and closed* and the
origin lies in the interior of the set.

In computer control implementation, the output is
sampled at some sampling interval, D, and because of
the nature of digital-to-analog converters, the input
applied to the system is constant over this interval
(see Fig. 3). This necessarily results in a piecewise
constant control input with period D. Thus, the set
that u(t) is a member of, is the class of piecewise
constant control functions, such that u(t) = u[k] for
each value of t between successive sampling intervals,
kD < t < �k � 1�D.

For batch systems, the objective is to force the
output to follow a desired trajectory, in control ter-
minology this is called the servo problem. That is,

under certain conditions, the control input, u(t), can
be found so that the output y as de®ned in Equation 1,
can be made to approach asymptotically certain
command inputs (desired values).

Through simple integration, the behaviour of the
system (Equation 1) at every discrete interval k can be
represented by

xk�1 � Uxk � Cuk

yk � D0xk

x0 � 0 �2�
where U contains the sampled-system dynamics. By
successive substitution, the state vector x can be
eliminated, yielding the convolution model,

yk � D0Uxkÿ1 �D0Cukÿ1

yk � D0U2xkÿ2 �D0UCukÿ2 �D0Cukÿ1

..

. ..
.

yk �
XNÿ1

`�1

D0U`ÿ1Cukÿ`�1 �D0UN xkÿN�1 �3�

The product of the terms multiplying the input u are
the impulse response coe�cients [11]. For stable
systems and for N su�ciently large, the impulse
coe�cients are reasonably approximated by 0. Thus,
a ®nite N is su�cient to describe the system.

A model based on the system response to a step
input can be found as

ŷ`jk � y0 �
XN

i�1

biDuk�`ÿi �4�

where ŷ`jk is the output, ` samples instances into the
future.

Equation 4 is commonly used in conventional
QDMC implementation. It can be obtained from
the convolution model, Equation 3, since the step
response coe�cients, b`, are the sum of the ®rst `
impulse response coe�cients; Duk � uk ÿ ukÿ1 re-
presents the change in the manipulated variable. Es-
timates of the output, ŷ`jk, are a function of the
present and past control moves. That is,

ŷk�`jk � y0 �
XN

i�`�1

biDuk�`ÿi

z���������������}|���������������{past

�
X̀
i�1

biDuk�`ÿi

z���������}|���������{future

�dk�`jk

�5�
where dk�`jk represents any unmodelled e�ects (see
Fig. 1).

The ®rst term in this equation is the e�ect of the
past inputs if all future control moves are the same as
ukÿ1, that is, no more control moves are made at
sample instances k; k � 1; . . .. The second term re-
presents the predicted behaviour due to future inputs.
If the linear convolution model is a perfect re-
presentation of the process, then dk�`jk represents
only external disturbances.

Since the above equation requires knowledge of
the disturbances into the future, which is not a priori

Fig. 3. Moving horizon approach of MPC.

* Given a ball with radius r and centre 0, if x is a member of this set,
then the distance from x to the centre is less than or equal to r
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known, it is reasonable to assume that future dis-
turbances will be the same as it is at the current
sample time k. That is,

dkjk � dk�1jk � dk�2jk � . . . � dk�`jk

An estimate of dk, can be obtained as the di�erence
between the measured value of the output, ym;k, and
its model prediction ŷk,

dkjk � ym;k ÿ y0 �
XN

i�1

biDukÿi

 !
�6�

Once the predictions are de®ned, we may solve for the
control moves subject to constraints using optimal
control theory.

The optimal control problem for the system de-
®ned by Equation 1 with control input u�t� and ob-
jective term

J �
Z T

0

L�x; u�dt �F�x�

may, in principle, be solved using the Hamilton±Ja-
cobi±Bellman partial di�erential equations [12]. In
the QDMC formulation, solving this set of equations
are avoided by solving an open-loop optimal control
problem for a sequence of states and applying the
control action assuming that the future disturbance
will be the same as it is at the current sample time k.

This is accomplished by selecting a quadratic ob-
jective function that re¯ects the error between the
predicted value of the output and the target value, rk,
and minimizing this over the set of admissible control
changes subject to satisfying constraints on the inputs
and outputs and the model, Equation 5,

min
Du

J :� k
XP

`�1

�rk�` ÿŷk�`jk�2 � v
XM
`�1

Du2
k�`ÿ1 �7�

k is a `cost' on not achieving the desired value, and v is
a `penalty' for excessive changes in the manipulated
variable. If the manipulated variable u is not penalized
then unacceptably large control moves can result.

The tuning parameters for this formulation are the
prediction horizon P , the controller horizon M , and
any weighting terms on the cost or penalty portions
of the objective function. With the controller in place,
there are no assurances of the closed-loop stability of
the system, regardless of whether the system being
controlled is linear or nonlinear. For an excellent
discussion on this issue see the work by Mayne [13].

By disregarding the constraints, the solution to
Equation 7 reduces to the standard least-squares
problem which can be solved explicitly. The reader is
referred to the work by Morshedi et al., [14] for the
proof of this claim.

The QDMC formulation is one approach of the
more general MPC framework. In MPC, the open-
loop optimal control problem is solved using dy-
namic programming and yields a time-varying,
nonlinear, control law. However, while an optimal
solution may be found, it does not imply stability
because of the assumption of a ®nite horizon

(cf. linear quadratic optimal controller). It has been
shown that stability can be achieved by varying the
tuning parameters [15]; how to change them, how-
ever, largely remains a trial and error process.

In practice, the choice of the horizon is selected to
be long su�ciently, so as to ensure that the process
has settled close to its equilibrium state at time
k � P , implicitly satisfying the stability constraint. If
the horizon is chosen to be in®nite then stability can
be guaranteed but the resulting optimal control
problem cannot be solved in general. Several re-
searchers have addressed this issue by reformulation
of the objective function or by developing speci®c
conditions that guarantee stability; the details can be
found in [16±18].

2.2. Nonlinear systems

The above discussion has been carried out with the
basic assumption that the process to be controlled is
linear. However, all real processes are nonlinear to
varying degrees and batch processes are more so than
most.

A general nonlinear system to be controlled is
given by the following set of ordinary di�erential
equations,

_x � f �x; u�
y � g�x�

x0 � x�0� �8�
where f and g are vector-valued, nonlinear functions
of the states x 2 Rn; the inputs u 2 Rm and the out-
puts y 2 Rq. The properties of the admissible set of u
and x still hold.

If the process is nonstationary and su�ciently
nonlinear, such as a batch process, then a single linear
model may not su�ce to represent its behaviour over
the batch cycle. Thus, the values of the step response
coe�cients, bi, will depend on the values of x and u at
each sampling instant, meaning that they are `local'
rather than `global' coe�cients.

A means of obtaining the step response model
coe�cients is to linearize the system of nonlinear
equations about some meaningful point, fxs; usg; then
step test the resulting linear model. The e�ect of the
past inputs and the disturbance are computed using
the step response model.

The linearization/step testing procedure must ne-
cessarily be repeated at each sampling instant, gen-
erating a bank of step response models, each valid
within a small neighbourhood of the operation.
Related work includes that of Garcia [4] and Gattu
and Za®riou [19] on a semibatch and batch chemical
process.

The general MPC strategy allows the use of state-
space models directly, thereby avoiding the step
testing and step response coe�cients calculations
[15,20]. However, to circumvent solving a nonlinear
programming problem, the linearization step will be
retained.
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A linear approximation to Equation 8 can be ob-
tained by retaining only the ®rst order terms in a
Taylor series expansion about some nominal state, xs

and manipulated variable us,

_�x � A�x� B�u

y � D0�x
�x0 � 0 �9�

where A and B are the Jacobian matrices. �x and �u are
the deviations of the state and manipulated variable
values from their nominal values, respectively. A
suitable linear, discrete, state-space model, obtained
by integration of Equation 9, will be used in the MPC
strategy to provide current and future estimates of
the output.

In the case of multiple inputs, Equation 7 becomes

min
Du

J :�
XP

`�1

e0q;k�`Keq;k�` �
XM
`�1

u0k�`ÿ1!1uk�`ÿ1

�
�Duk�`ÿ1!2Duk�`ÿ1� �10�

The resulting controller moves are those that mini-
mize Du subject to satisfying equality and inequality
constraints imposed by the system and the allowable
limits on the inputs and outputs. As before, K is a
weighting matrix that relates the relative importance
of the errors, !1 and !2 are penalties on using too
`fast' a control action, and e is the predicted deviation
from the desired value.

2.3. Controllability and stability

Controllability and stability are readily established
for linear systems [21]. However, for nonlinear sys-
tems the proof is almost always system dependent. In
the case where there the nonlinear system is ap-
proximated by local, linear models, it is enough to
show that each local model is asymptotically con-
trollable.

De®nition: A linear system is asymptotically con-
trollable if and only if the unstable modes (eigenva-
lues) are controllable.

Asymptotic controllability of each linear system
implies `asymptotic stability' of each linear system,
but more importantly it ensures that the nonlinear
system, Equation 8 is locally asymptotically stable as
the following theorem indicates [22].

Theorem: Assume that the pair �x0; u0� is such that for
the time-invariant, continuous-time systemP

: _x � f �x; u�; with x 2 Rn and u 2 Rm,

f �x0; u0� � 0

Assume that the linearization of
P

is asymptotically
controllable. Then

P
is locally asymptotically con-

trollable (to x0). Moreover, there exists in that case an
n� m matrix K such that the closed-loop system

_x :� f �x; u0 � K�xÿ x0��
is locally asymptotically stable. The proof can be
found in Appendix 1.

The system de®ned by Equation 2 will be open-
loop stable if and only if the continuous system,
Equation 9 is stable.

3. Controller design

Two model predictive controller designs are devel-
oped. The ®rst employs the kth linear model to pro-
vide the output predictions and the disturbance
estimate over the prediction horizon P . Thus, at any
given sampling instant, the kth model is ®xed and is
used to estimate ŷk�`; f` � 1; 2; . . . ; Pg.

The second scheme, uses a bank of linear models
obtained from the o�ine evaluation of the Jacobian
about the nominal process variables' pro®les to pro-
vide the projected estimates. At sampling instance k,
the kth model is used to provide the estimate ŷk. To
obtain the future estimates at time k, the �k � 1�
model is used to obtain ŷk�1jk; the �k � 2� model is
used to obtain ŷk�2jk and so on.

In what follows, FMPC (®xed model predictive
control) will be used to refer to scheme I and MMPC
(moving model predictive control) will be used for
scheme II.

4. Electrochemical reactor

Electrochemical (EC) batch reactors are used in a
number of processes such as in the production of
specialty inorganic and organic chemicals. EC sys-
tems di�er signi®cantly from conventional chemical
systems in that dynamic manipulation of voltage or
current is much faster responding as compared to the
conventional manipulation of temperature or ¯ow-
rate in chemical reactors (transport delays). It is also
possible to use control strategies in which the poten-
tial or current is rapidly perturbed since the electrical
`inertial'y e�ect is much less than that of the thermal
or mass transfer e�ects. There are however, di�culties
in the control of EC batch reactors. Most noticeably,
there appears to be only a single manipulated vari-
able, that is, the potential or the current.

In this particular application, the selected reac-
tions, which occur at the surface of the electrodes,
involve the competing chemical/electrochemical re-
actions,

A! I electrochem

I! D chem

I! U electrochem

where I is an intermediate, D is the desired product,
and U is the undesired product. This general opera-
tional mechanism has been used to represent the
reduction of nitrobenzene to p-aminophenol and
aniline, through an intermediate, phenylhydrox-
ylamine [6, 7, 23]. In this reaction sequence where
there are competing chemical and electrochemical
reactions, it is extremely di�cult to control the con-

y inductance and capacitance e�ects tend to limit the rates of
change in voltages and currents
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centration of the product obtained by the chemical
route due to a lack of sensitivity to the manipulated
variable. This example is used to illustrate model-
based concepts applied to an electrochemical reactor
and not to emphasize the particular chemistry.

Several simplifying assumptions have been made
about the transport and kinetic processes: (i) the re-
actor is well-mixed with mass transfer resistance oc-
curring as a result of di�usion through the Nernst
di�usion layer; (ii) the homogeneous chemical reac-
tion I! D follows ®rst-order kinetics in the bulk and
consumes an inconsequential amount of reactant in
the thin Nernst di�usion layer; (iii) the capacitance of
the double layer is negligible; (iv) the current dis-
tribution is uniform; and (v) the charge transfer re-
actions are irreversible with a ®rst-order dependence
on reactant concentration.

The component continuity equations that describe
the production or consumption of a component are:

_cA � ÿak1cAseÿa1FE

_cI � ak1cAse
ÿa1FE ÿ ak2cIse

ÿa2FE ÿ k3cI

_cD � k3cI

_cU � ak2cIse
ÿa2FE

cA�0� � c0
A �11�

where the subscript s represents the surface con-
centration, F � F =RT where F is the Faraday con-
stant, E is the electrode potential, kj is the reaction
rate constant for reaction j; a is the electrode surface
area per unit volume of the reactor, and aj is the
transfer coe�cient of the desired reaction. Values for
the mass-transfer coe�cient of species i indicate the
relative degree to which the reactions are limited by
the kinetics or the mass-transfer resistance. In this
study it will be assumed that the mass-transfer re-
sistance of component A is twice as great as that of I,

kmA � 4km

kmI � 2km

1 < km < 105

The total batch time tf is set at 4 h and the sample
time is 3.6 s. The values of all parameters can be
found in [7].

The optimal time-varying electrode potential
which maximizes the production of D is found for the
condition of a1 > a2 [7]. In this study, the objective
will be to track the prescribed desired concentration
pro®le D, that is a result of the optimal time-varying
electrode potential, but in the presence of
disturbances.

The optimal concentration pro®les are shown in
Fig. 4. Observe, that the yield of D is about six times
that of U and that at the end of the batch cycle, there
remains 32% of the intermediate I but < 2% A. In
Fig. 5, the potential is ramped from an initial value of
1 V to the steady value of 0.2 V.

The surface concentrations can be eliminated from
Equation 11 by applying a mass balance across the
Nernst di�usion layer,

kmA�cA ÿ cAs� � k1cAse
ÿa1FE

kmI�cI ÿ cIs� � k2cIse
ÿa2FE ÿ k1cAse

ÿa1FE

where kmi is the mass-transfer coe�cient of species i.
Introduction of the following dimensionless terms

xi :� ci

c0
A

k�i :� akitf

fA :� kmA

k1u1 � kmA
fI :� kmI

k2u2 � kmI

u1 :� eÿa1FE u2 :� eÿa2FE

t� :� t
tf

into Equation 11 yields the following dimensionless
form,

_xA � �k�1fAu1�xA

_xI � k�1u1fA ÿ k�2
k1

kmI
fAfI u1u2

� �
xA ÿ k�3 � k�2fIu2

ÿ �
xI

_xD � k�3xI

_xU � �k�2fIu2�xI � k�2
k1

kmI
fAfIu1u2

� �
xA

xA�0� � 1:0 �12�

Fig. 4. Dimensionless concentration pro®les using the optimal
electrode potential. (A) feed component, (I) intermediate compo-
nent, (D) desired product, (U) undesired product.

Fig. 5. Optimal electrode potential.
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Control variables u1 and u2 are not independent, thus
there is only one manipulated variable,

u1 � ua1=a2

2 � ua
2

The electrode potential at the cathode is a priori
constrained by

Ec;max � E � 1
to avoid undesirable electrolyte and/or solvent elec-
trochemistry. This necessarily constrains the control
variables, fu1; u2g:

0 � u1 � u1;max u1;max � eÿa1FEc;max

0 � u2 � u2;max u2;max � eÿa2FEc;max

The linearized form (see Appendix 2) of Equation
12, a priori evaluated at every sample instance using
the optimal variables' values, is used in the FMPC
and MMPC strategy.

4.1. Controllability and stability of EC reactor

Let the controlled variable be the desired product xD.
Then, from Equation 9, D0 � �0 0 1 0� and the rank of
A is found to be two. If the system is completely
controllable, the linear rank condition should in-
dicate a rank of four, which is the number of states
[21]. However, the rank is found to be three, implying
that at least one of the states is uncontrollable.

A similarity transformation can be found that will
yield a matrix fraction description of the controllable
and uncontrollable states [24]. Moreover, a particular
choice of the transformation can be made so that the
undesirable product, xU , is also the uncontrollable
state. Analysis reveals that the uncontrollable state
results from having common terms in the denomi-
nator and numerator polynomial of the transfer
functionz cancelling each other. Here, this cancella-
tion involves a common root at zero; explaining the
rank de®ciency.

There is almost but not quite another cancellation
of common terms that occur near zero. That is, be-
sides the previous zero root, the denominator poly-
nomial has a second one; however, the numerator
polynomial has a root that is nearly but not exactly at
zero. The implication of this is that although in the-
ory there are three controllable states, one is nearly
uncontrollable. Thus, from a practical perspective,
only two of the states can be controlled e�ectively.

The problem with the uncontrollable state does
not severely a�ect our ability to control the EC sys-
tem. First, it is known by the above theorem to be
locally asymptotically stable from an input/output
perspective. Thus, control of the desired product is
possible. Second, the process only operates for a ®nite
time. Therefore, the uncontrollable states will not
have su�cient time to create serious operational
problems meaning that we can control the desired
product but not the undesired one.

5. Results and discussion

Both a ®xed model (FMPC) and a moving model
(MMPC) based predictive controller designs, are
implemented on the electrochemical batch reactor
(EC). The FMPC strategy uses the kth linear, dy-
namic state-space model to provide the current esti-
mate of the output at time k and the predictions
fk � `; ` � 1; 2; . . . ; Pg into the future. In contrast,
the MMPC strategy uses the fk; k � 1; . . . ; Pg linear,
dynamic state-space models to provide the current
and future estimates.

The objective will be to maintain the desired pro-
duct pro®le (see Fig. 4), as determined from the op-
timal open-loop studies, by changing the electrode
potential in the presence of two di�erent disturbances
imposed independently on the system. These dis-
turbances are (i) the presence of a small amount
(10%) of I at the start of the batch cycle and (ii) a
reduction in the available electrode area (40%) which
can occur in EC reactors due to the `clogging' of the
porous electrodes or the formation of ®lms in the case
of ordinary electrodes.

The initial presence of I and any applied potential
will preferentially produce xU; while the reduction in
the electrode surface area will prevent the expected
production of I within the allowed batch time hence,
both the production of xD and xU will be a�ected.
This latter disturbance demonstrates the robustness
of the controller design to model uncertainty.

The prediction horizon, P , is chosen to be 3 and
that of the control horizon, M , to be 2. It is found
that increasing P has a destabilizing e�ect on the
closed-loop process performance. There are two
reasons for this. First, the assumption of keeping the
last control action constant over the remainder of the
prediction horizon is not reasonable. This assump-
tion is valid for setpoint tracking, but in the servo
case such as this, a constant control e�ort will result
in large deviations from the desired trajectory. Sec-
ond, this e�ect is compounded by the fact that as the
errors increase, the linear models become less valid.
The latter fact also supports the subsequent conclu-
sion that the performance of MMPC is better than
that of FMPC.

Figures 6 and 7 illustrate the reactor performance
and the manipulated variable pro®le (electrode po-
tential), respectively using the FMPC and MMPC
strategy under ideal conditions. The `ref' line is the
desired trajectory. The FMPC strategy produces 20%
less D while producing 12% more of the undesired
product. In contrast, MMPC produces 9.5% less D as
compared to the reference value but, 12% more than
FMPC.

Although the ®nal production value of U by the
MMPC strategy is the same as FMPC, it is worth-
while noting that the production of U after 80% of
the batch cycle is complete exhibits a ramp-like
growth. This is due to the zero eigenvalue which
produces an integrating e�ect. Thus, while for most
of the batch cycle, MMPC maintained a low pro-z Laplace transform of Equation 9
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duction rate of U, because only two of the states are
controllable, it is unable to suppress completely the
unfavourable production of U over the entire batch
cycle and simultaneously maintain the desired pro-
duction of D.

The electrode potential has a ®nal value of )0.34
and 0.33 V for FMPC and MMPC strategy, respec-
tively. In contrast to the reference electrode potential,
both FMPC and MMPC controller actions are more
aggressive early into the batch, and in the case of
MMPC later on as well. Thus, we can conclude that
the model predictive controller actions are selected so
as to make an adjustment at every opportunity.

Figures 8 and 9 demonstrate the reactor perfor-
mance and the electrode potential, respectively, when
there is 10% I at the start of the batch cycle; I acts as a
contaminant. The FMPC strategy produces 22% and
35% less D as compared to MMPC and the reference
value, respectively. MMPC performs the same as in
the ideal case (previous results) which indicates that

having a more accurate model of the process will lead
to better rejection of the disturbance. The production
of U by the FMPC strategy is 23% more than that of
the MMPC strategy. The ®nal electrode potentials
are )0.69 and 0.65 V for FMPC and MMPC,
respectively.

Figures 10 and 11 represent the reactor perfor-
mance and the electrode potential, respectively, for a
40% reduction in the electrode area. This case de-
monstrates the controller's robust performance to
plant/model mismatch. MMPC produces 22% more
D and 56% less U as compared to FMPC. The elec-
trode potential pro®les of FMPC are similar to those
in Fig. 9; however, they are more aggressive in the
MMPC strategy for the 10% increase in I. This im-
plies that the presence of I has a greater e�ect on the
reactor performance than the deterioration of the
electrode area. Nevertheless, the FMPC and the
MMPC controllers provided good, robust perfor-
mance in both cases.

Fig. 6. Dimensionless concentration pro®les with no disturbance
present. Key: (� � � � � �) FMPC strategy; ( ) MMPC strategy, (D)
desired product, (U) undesired product; (ÐÐ) reference trajectory
for desired product.

Fig. 7. Optimal electrode potential with no disturbance present.
Key: (� � � � � �) FMPC strategy; ( ) MMPC strategy; (ÐÐ) op-
timal electrode potential pro®le.

Fig. 8. Dimensionless concentration pro®les in the presence of 10%
increase in the intermediate component I. Key: (� � � � � �) FMPC
strategy; ( ) MMPC strategy, (D) desired product, (U) un-
desired product); (ÐÐ) reference trajectory for desired product.

Fig. 9. Optimal electrode potential in the presence of 10% increase
in the intermediate component I. Key: (� � � � � �) FMPC strategy;
( ) MMPC strategy; (ÐÐ) optimal electrode potential pro®le.
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6. Summary

This work has demonstrated two model predictive
controller designs that use linear, dynamic, statespace
models to control the production of a component in
an electrochemical/chemical reaction network in a
batch reactor. These models were developed from the
linearization of a nonlinear ®rst principles model of
the reactor, one at each sample time k.

The ®rst design, FMPC, employs only the kth
linear, dynamic, state-space model to predict the kth
and future estimates; the other, MMPC, uses the
kth; �k � 1�, up to the �k � P � model to provide the
current and future estimates. In addition the MMPC
linear models are evaluated not at the current state
nor online, rather they are a priori determined o�ine
using the desired trajectory pro®le.

This key point has two implications. First, the
o�ine calculations are less burdensome for online
implementation of more complex systems and
second, for highly nonlinear systems, the current state

should only be used to evaluate the current linear
model because the linear model is only valid within a
neighbourhood of that point. The use of the kth
measurement to evaluate the �k � 1�st model and so
on presumes that the system is time-invariant, which
it is not appropriate for almost all batch process.
Similarly, to use the kth linear model to represent the
complete time-dependent behaviour of a nonsta-
tionary process does not produce good controller
results. This latter point is demonstrated by the
results obtained for the FMPC controller strategy.

The performance of the MMPC controller was
found to be superior to the FMPC design for the
reasons stated above. Although, the MMPC con-
troller did not exactly track the desired pro®le, it
provided good reactor performance in the presence of
a disturbance and excellent robustness to one ex-
ample of plant/model mismatch.

The model predictive control framework unlike
the conventional feedback controllers is attractive
because it uses optimization to determine the optimal
control action in the presence of constraints on the
states, the outputs and the manipulated variables for
the current sampling instance and up to M moves into
the future. It also provides an indication of the pro-
cess performance if no more control action is taken
after M moves.

In the case of the electrochemical system studied, it
was found that P > 3 had a destabilizing e�ect on the
closed-loop process performance (cf. continuous
processes P � 30�. This can be understood when one
considers that approximate models are being used to
represent the highly nonlinear process. Thus, holding
the last control action constant will result in large
deviations from the desired pro®le.

An analysis of the controllability of the electro-
chemical system was also presented as it was relevant
to the controller design. In particular, it was noted
that of the four states, only two can be controlled in
practice. This corroborates the performance of both
controllers.
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Appendix A

Proof:
It is enough to prove that

_x � fcl�x� :� f �x; u0 � F �xÿ x0��
is locally asymptotically stable as stabilizability implies controlla-
bility. That is, a linear system is asymptotically controllable if and
only if its unstable modes are controllable.

R : _x � f �x; u�
linearize:

f �x; u� � A�xÿ x0� � B�uÿ u0� � g�xÿ x0; uÿ u0�
Rcl : _x � fcl�x� :� f �x; u0 � F �xÿ x0��

fcl�x� � A�xÿ x0� � B�u0 � F �xÿ x0� ÿ u0�
� g�xÿ x0; u0 � F �xÿ x0� ÿ u0�

fcl�x� � Acl�xÿ x0� � c�xÿ x0; F �xÿ x0��
where

Acl :� A� BF

c�xÿ x0; F �xÿ x0�� :� g�xÿ x0; F �xÿ x0��

k a;b k! 1
lim k c�a;b� k

k a; b k � 0

For nonlinear system, the best one can do is to establish that the
system is asymptotically stable or asymptotically controllable is to
use the Lyapunov function method.

Choose the Lyapunov function such that V �x� is proper at x0.

V �x� :� �xÿ x0�T P �xÿ x0�

on Rn; x 2 O where O is some neighbourhood about x0, that is a
compact� subset of v. P is a positive de®nite, symmetric matrix,
P > 0, such that

AT
clP � PAcl � I

and is su�cient for

V �x� :� xT Px

to be a Lyapunov function for Rcl
V �x� proper at x0 for small enough e implies

fx 2 vjV �x� � eg e > 0

V �x� must also be positive de®nite on O. By the above choice of
V �x� it does,

V �x0� � 0 x0 � 0

V �x� > 0 8 x 2 O x 6� 0

For each x 6� x0 2 O there is some ®nite time r 2T; r > 0 and
some control u��� 2 U, the admissible set for all x

rV �x� � fcl�x� < 0 8 t 2 �0; r� �A1�
whenever �xÿ x0� is small enough.

By the continuity of rV �x� and fcl�x�, the dot product in
Equation (A1) is given by

rV �x�fcl�x� � ÿ k xÿ x0 k2 �2�xÿ x0�T Pc�xÿ x0� � 0

It remains to show that the second term is less than or equal to
zero. Using the Cauchy-Schwarz inequality, we can write

j2�xÿ x0�T Pc�xÿ x0�j � k xÿ x0 k k 2Pc�xÿ x0� k
De®ning c :� 2P ,

j2�xÿ x0�T Pc�xÿ x0�j � c k xÿ x0 k k c�xÿ x0� k
j2�xÿ x0�T Pc�xÿ x0�j

k xÿ x0 k2
� c
k c�xÿ x0� k
k xÿ x0 k

For k �xÿ x0� k small enough and since c�xÿ x0� is of order
0�xÿ x0� then

k c�xÿ x0� k
k xÿ x0 k ! 0

Hence, it follows that

rV �x� � fcl�x� < 0

Appendix B

The linearization of Equation 12 yields,

rxfjxs ; us

�

ÿk�1fAua
2 0 0 0

fAua
2�k�1 ÿ k�2

k1

kmI
fI u2� ÿ�k�3 � k�2fI u2� 0 0

0 k�3 0 0

k�2
k1

kmI
fAfI u

1�a
2 k�2fI u2 0 0

0BBB@
1CCCA

@f

@u2
jxs ; us

�

ÿk1xAua
2

dfA

du2

� fA
a
u2

� �
k1xAua

2
dfA

du2

� fA
c
u2

� �
ÿ k2

k1

kmI
ua�1

2 fI
dfA

du2

�
� fA

dfI

du2

� fAfI
a�1
u2

�
xA ÿ k2 fI � u2

dfI

du2

� �
xI

0

k2 fI � u2
dfI

du2

� �
xI � k2

k1

kmI
ua

2

�
fAfI �a� 1�

� fI u2
dfA

du2

� fAu2
dfI

du2

�
xA

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

�A space v is said to be compact if every open cover O of v contains
a ®nite subcollection that also covers v
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